The 'French paradox' rears its ugly head again. The reasoning goes something like this: French people eat more saturated animal fat than any other affluent nation, and have the second-lowest rate of coronary heart disease (only after Japan, which has a much higher stroke rate than France). French people drink red wine. Therefore, red wine must be protecting them against the artery-clogging yogurt, beef and butter.
The latest study to fall into this myth was published in the AJCN recently (1). Investigators showed that 1/3 bottle of red wine per day for 21 days increased blood flow in forearm vessels of healthy volunteers, which they interpreted as "enhanced vascular endothelial function". The novel finding in this paper is that red wine consumption increases the migration of certain cells into blood vessels that are thought to maintain and repair the vessels. There were no control groups for comparison, neither abstainers nor a group drinking a different type of alcohol.
The investigators then went on to speculate that the various antioxidant polyphenols in red wine, such as the molecule resveratrol, could be involved. This could be true, but there's another possible mechanism here...
Ethanol-- plain old alcohol. You could drink a 40 oz bottle of malt liquor every night and it might do the same thing.
No matter what the source, alcohol consumption is associated with a lower risk of cardiovascular disease out to about 3-4 drinks per day, after which the risk goes back up (2, 3)*. The association is not trivial-- up to a 62% lower risk associated with alcohol use. Controlled trials have shown that alcohol, regardless of the source, increases HDL cholesterol and reduces the tendency to clot (4).
Should we all start downing three drinks a day? Not so fast. Although alcohol does probably decrease heart attack risk, the effect on total mortality is equivocal. That's because it increases the risk of cancers and accidents. Alcohol is a drug, and my opinion is that like all drugs, overall it will not benefit the health of a person with an otherwise good diet and lifestyle. That being said, it's enjoyable, so I have no problem with drinking it in moderation. Just don't think you're doing it for your health.
So does red wine decrease the risk of having a heart attack? Probably, yes, just like malt liquor does. I do think it's interesting to speculate about why alcohol (probably) reduces heart attack risk. Could it be because it relaxes us? I'm going to ponder that over a glass of whiskey...
* The first study is really interesting. For once, I see no evidence of "healthy user bias". Rates of healthy behaviors were virtually identical across quintiles of alcohol intake. This gives me a higher degree of confidence in the results.
Sweet Potatoes
We can debate the nutritional qualities of a food until we're blue in the face, but in the end, we still may not have a very accurate prediction of the health effects of that food. The question we need to answer is this one: has this food sustained healthy traditional cultures?
I'm currently reading a great book edited by Drs. Hugh Trowell and Denis Burkitt, titled Western Diseases: Their Emergence and Prevention. It's a compilation of chapters describing the diet and health of traditional populations around the world as they modernize.
The book contains a chapter on Papua New Guinea highlanders. Here's a description of their diet:
How was their health? Like many non-industrial societies, they had a high infant/child mortality rate, such that 43 percent of children died before growing old enough to marry. Surprisingly, protein deficiency was rare. No obvious malnutrition was observed in this population, although iodine-deficiency cretinism occurs in some highlands populations:
There was no evidence of coronary heart disease or diabetes. Average blood pressure was on the high side, but did not increase with age. Investigators administered 100 gram glucose tolerance tests and only 3.8 percent of the population had glucose readings above 160 mg/dL, compared to 21 percent of Americans. A study of 7,512 Papuans from several regions with minimal European contact indicated a diabetes prevalence of 0.1 percent, a strikingly low rate. For comparison, in 2007, 10.7 percent of American adults had diabetes (1).
I'm not claiming it's optimal to eat nothing but sweet potatoes. But this is the strongest evidence we're going to come by that sweet potatoes can be eaten in quantity as part of a healthy diet. However, I wish I knew more about the varieties this group ate. Sweet potatoes aren't necessarily sweet. Caribbean 'boniato' sweet potatoes are dry, starchy and off-white. In the US, I prefer the yellow sweet potatoes to the orange variety of sweet potato labeled 'yams', because the former are starchier and less sweet. If I could get my hands on locally grown boniatos here, I'd eat those, but boniatos are decidedly tropical.
Instead, I eat potatoes, but I'm reluctant to recommend them whole-heartedly because I don't know enough about the traditional cultures that consumed them. I believe there are some low-CHD, low-obesity African populations that eat potatoes as part of a starch-based diet, but I haven't looked into it closely enough to make any broad statements. Potatoes have some nutritional advantages over sweet potatoes (higher protein content, better amino acid profile), but also some disadvantages (lower fiber, lower in most micronutrients, toxic glycoalkaloids).
I'm currently reading a great book edited by Drs. Hugh Trowell and Denis Burkitt, titled Western Diseases: Their Emergence and Prevention. It's a compilation of chapters describing the diet and health of traditional populations around the world as they modernize.
The book contains a chapter on Papua New Guinea highlanders. Here's a description of their diet:
A diet survey was undertaken involving 90 subjects, in which all food consumed by each individual was weighed over a period of seven consecutive days. Sweet potato supplied over 90 percent of their total food intake, while non-tuberous vegetables accounted for less than 5 percent of the food consumed and the intake of meat was negligible... Extensive herds of pigs are maintained and, during exchange ceremonies, large amounts of pork are consumed.They ate no salt. Their calories were almost entirely supplied by sweet potatoes, with occasional feasts on pork.
How was their health? Like many non-industrial societies, they had a high infant/child mortality rate, such that 43 percent of children died before growing old enough to marry. Surprisingly, protein deficiency was rare. No obvious malnutrition was observed in this population, although iodine-deficiency cretinism occurs in some highlands populations:
Young adults were well built and physically fit and had normal levels of haemoglobin and serum albumin. Further, adult females showed no evidence of malnutrition in spite of the demands by repeated cycles of pregnancy and lactation. On the basis of American standards (Society of Actuaries, 1959), both sexes were close to 100 percent standard weight in their twenties.
The Harvard Pack Test carried out on 152 consecutive subjects demonstrated a high level of physical fitness which was maintained well into middle-age. Use of a bicycle ergometer gave an estimated maximum oxygen uptake of 45.2 ml per kilogram per minute and thus confirmed the high level of cardiopulmonary fitness in this group.Body weight decreased with age, which is typical of many non-industrial cultures and reflects declining muscle mass but continued leanness.
There was no evidence of coronary heart disease or diabetes. Average blood pressure was on the high side, but did not increase with age. Investigators administered 100 gram glucose tolerance tests and only 3.8 percent of the population had glucose readings above 160 mg/dL, compared to 21 percent of Americans. A study of 7,512 Papuans from several regions with minimal European contact indicated a diabetes prevalence of 0.1 percent, a strikingly low rate. For comparison, in 2007, 10.7 percent of American adults had diabetes (1).
I'm not claiming it's optimal to eat nothing but sweet potatoes. But this is the strongest evidence we're going to come by that sweet potatoes can be eaten in quantity as part of a healthy diet. However, I wish I knew more about the varieties this group ate. Sweet potatoes aren't necessarily sweet. Caribbean 'boniato' sweet potatoes are dry, starchy and off-white. In the US, I prefer the yellow sweet potatoes to the orange variety of sweet potato labeled 'yams', because the former are starchier and less sweet. If I could get my hands on locally grown boniatos here, I'd eat those, but boniatos are decidedly tropical.
Instead, I eat potatoes, but I'm reluctant to recommend them whole-heartedly because I don't know enough about the traditional cultures that consumed them. I believe there are some low-CHD, low-obesity African populations that eat potatoes as part of a starch-based diet, but I haven't looked into it closely enough to make any broad statements. Potatoes have some nutritional advantages over sweet potatoes (higher protein content, better amino acid profile), but also some disadvantages (lower fiber, lower in most micronutrients, toxic glycoalkaloids).
Pastured Dairy may Prevent Heart Attacks
Not all dairy is created equal. Dairy from grain-fed and pasture-fed cows differs in a number of ways. Pastured dairy contains more fat-soluble nutrients such as vitamin K2, vitamin A, vitamin E, carotenes and omega-3 fatty acids. It also contains more conjugated linoleic acid, a fat-soluble molecule that has been under intense study due to its ability to inhibit obesity and cancer in animals. The findings in human supplementation trials have been mixed, some confirming the animal studies and others not. In feeding experiments in cows, Dr. T. R. Dhiman and colleagues found the following (1):
In a recent article from the AJCN, Dr. Liesbeth Smit and colleagues examined the level of CLA in the body fat of Costa Rican adults who had suffered a heart attack, and compared it to another group who had not (a case-control study, for the aficionados). People with the highest level of CLA in their body fat were 49% less likely to have had a heart attack, compared to those with the lowest level (2).
Since dairy was the main source of CLA in this population, the association between CLA and heart attack risk is inextricable from the other components in pastured dairy fat. In other words, CLA is simply a marker of pastured dairy fat intake in this population, and the (possible) benefit could just as easily have come from vitamin K2 or something else in the fat.
This study isn't the first one to suggest that pastured dairy fat may be uniquely protective. The Rotterdam and EPIC studies found that a higher vitamin K2 intake is associated with a lower risk of heart attack, cancer and overall mortality (3, 4, 5). In the 1940s, Dr. Weston Price estimated that pastured dairy contains up to 50 times more vitamin K2 than grain-fed dairy. He summarized his findings in the classic book Nutrition and Physical Degeneration. This finding has not been repeated in recent times, but I have a little hunch that may change soon...
Vitamin K2
Cardiovascular Disease and Vitamin K2
Can Vitamin K2 Reverse Arterial Calcification?
Cows grazing pasture and receiving no supplemental feed had 500% more conjugated linoleic acid in milk fat than cows fed typical dairy diets.Fat from ruminants such as cows, sheep and goats is the main source of CLA in the human diet. CLA is fat-soluble. Therefore, skim milk doesn't contain any. It's also present in human body fat in proportion to dietary intake. This can come from dairy or flesh.
In a recent article from the AJCN, Dr. Liesbeth Smit and colleagues examined the level of CLA in the body fat of Costa Rican adults who had suffered a heart attack, and compared it to another group who had not (a case-control study, for the aficionados). People with the highest level of CLA in their body fat were 49% less likely to have had a heart attack, compared to those with the lowest level (2).
Since dairy was the main source of CLA in this population, the association between CLA and heart attack risk is inextricable from the other components in pastured dairy fat. In other words, CLA is simply a marker of pastured dairy fat intake in this population, and the (possible) benefit could just as easily have come from vitamin K2 or something else in the fat.
This study isn't the first one to suggest that pastured dairy fat may be uniquely protective. The Rotterdam and EPIC studies found that a higher vitamin K2 intake is associated with a lower risk of heart attack, cancer and overall mortality (3, 4, 5). In the 1940s, Dr. Weston Price estimated that pastured dairy contains up to 50 times more vitamin K2 than grain-fed dairy. He summarized his findings in the classic book Nutrition and Physical Degeneration. This finding has not been repeated in recent times, but I have a little hunch that may change soon...
Vitamin K2
Cardiovascular Disease and Vitamin K2
Can Vitamin K2 Reverse Arterial Calcification?
Malocclusion Posts Translated into German
It's nice to see on my website statistics program that Whole Health Source has a solid international following. As commonly as English is spoken throughout the world however, there are many people who do not have access to this blog due to a language barrier.
A gentleman by the name of Bertram has translated/summarized my series on the causes and prevention of malocclusion (misaligned teeth) into German. His site is OriginalHealth.net, and you can find the first post here, with links to the subsequent 8. It looks like an interesting site-- I wish I could read German. Thanks Bertram!
A gentleman by the name of Bertram has translated/summarized my series on the causes and prevention of malocclusion (misaligned teeth) into German. His site is OriginalHealth.net, and you can find the first post here, with links to the subsequent 8. It looks like an interesting site-- I wish I could read German. Thanks Bertram!
Intervew with Chris Kresser of The Healthy Skeptic
Last week, I did an audio interview with Chris Kresser of The Healthy Skeptic, on the topic of obesity. We put some preparation into it, and I think it's my best interview yet. Chris was a gracious host. We covered some interesting ground, including (list copied from Chris's post):
- The little known causes of the obesity epidemic
- Why the common weight loss advice to “eat less and exercise more” isn’t effective
- The long-term results of various weight loss diets (low-carb, low-fat, etc.)
- The body-fat setpoint and its relevance to weight regulation
- The importance of gut flora in weight regulation
- The role of industrial seed oils in the obesity epidemic
- Obesity as immunological and inflammatory disease
- Strategies for preventing weight gain and promoting weight loss
UPDATE on Pandemic Planning and Response
Between 23rd and 25th March 2010 I took part in the first Asia Europe Foundation Network for Public Health workshop exploring ways of enhancing the pandemic preparedness capabilities across partner countries. This, the first of three workshops, brought together 26 high-level participants from multiple sectors including amongst others, scientists, governments, NGO’s and the health sector. The event was facilitated by Prospex http://www.prospex.com/ and managed by the Asia Europe Foundation (ASEF) http://www.asef.org/
Although the detail of the work, is at this stage not public, I’d like to share some of the themes and process’ to keep those of you who are interested in this agenda, up to speed. I’d also like to encourage dialogue around these themes to continue our own explorations of this agenda.
Through an active participatory workshop the partners identified some of the driving factors and uncertainties around future pandemics and as such, were exploring the themes to feed into the second session which will develop and test some of the ideas which in turn, will feed the third session aiming to refine and analyze the scenarios developed to inform long-term strategic implementation and outreach.
The main elements of this first workshop involved participants identifying their own hopes and fears around the issues which included aspects of co-ordination, current preparedness and human capacity. The facilitators enabled the group to contextualise individual factors and further explore those from very specific perspectives ranging from the legal, economic and political, to demographic, ethical and cultural.
By introducing and interrogating existing foresight studies, the facilitators enabled, (for what was many of us our introduction to this field) an analysis of the successes and failings of contemporary thought. Much of the workshop unpicked the uncertainties associated with pandemic and enabled a clustering of factors with innovation (R&D) and notions of the Human Factor high on the agenda. Through the exploration of 15 clusters, the group further identified polarities in thinking and possibilities of response.
By way of example, I was personally very engaged in conversation around information and communication, particularly with reference to how messages are communicated. The polarities explored around these factors focused on whether pandemic messages would be critically received, or would be met with indifference. Worse than this perhaps, and a theme of many of my papers relating to arts/public health; would be that the media propagate hysteria. Participants from the media sector who took part in this work provided strong critical debate and crucial input into my thinking.
With hindsight, many of the subtle discussions I’d had here in Manchester prior to the workshop, weren’t given a full airing, but notions of the human element, universal metaphor and understanding the roles of both the media and new technologies were robustly discussed as part of the bigger picture. I was also able to make opportunities to discuss the notion of diversity and how different societies/communities around the world will interpret messages differently.
Whilst a good deal of the workshop gave opportunity for blue-sky thinking, it grounded very diverse perspectives in a community of joint interest. For my own part being jet-lagged, in a strange environment and in extreme heat made for quite an anxious start. However, the sessions were meticulously thought through and conducted in English. It is mortifying as a native English speaker, to be surrounded by people for whom this is a second or third language and who speak far more eloquently and with insight than someone who can barely master his own tongue. The company was truly diverse and I felt under a good deal of pressure as one of only two participants from the arts sector.
I most certainly feel that I added to the mix and injected the notion of thinking creatively around this public health agenda, but I could have more explicitly inputted on the role of the artist in society, both as reflecting and questioning societal norms. In particular, the role of the artist within research and development and community engagement is an area I hope to develop further in this work.
I was impressed by the creative insight of a number of participants from wildly different backgrounds, who positively exuded a deep understanding around the potency and relevance of the arts to this area of work.
Clive Parkinson
Although the detail of the work, is at this stage not public, I’d like to share some of the themes and process’ to keep those of you who are interested in this agenda, up to speed. I’d also like to encourage dialogue around these themes to continue our own explorations of this agenda.
Through an active participatory workshop the partners identified some of the driving factors and uncertainties around future pandemics and as such, were exploring the themes to feed into the second session which will develop and test some of the ideas which in turn, will feed the third session aiming to refine and analyze the scenarios developed to inform long-term strategic implementation and outreach.
The main elements of this first workshop involved participants identifying their own hopes and fears around the issues which included aspects of co-ordination, current preparedness and human capacity. The facilitators enabled the group to contextualise individual factors and further explore those from very specific perspectives ranging from the legal, economic and political, to demographic, ethical and cultural.
By introducing and interrogating existing foresight studies, the facilitators enabled, (for what was many of us our introduction to this field) an analysis of the successes and failings of contemporary thought. Much of the workshop unpicked the uncertainties associated with pandemic and enabled a clustering of factors with innovation (R&D) and notions of the Human Factor high on the agenda. Through the exploration of 15 clusters, the group further identified polarities in thinking and possibilities of response.
By way of example, I was personally very engaged in conversation around information and communication, particularly with reference to how messages are communicated. The polarities explored around these factors focused on whether pandemic messages would be critically received, or would be met with indifference. Worse than this perhaps, and a theme of many of my papers relating to arts/public health; would be that the media propagate hysteria. Participants from the media sector who took part in this work provided strong critical debate and crucial input into my thinking.
With hindsight, many of the subtle discussions I’d had here in Manchester prior to the workshop, weren’t given a full airing, but notions of the human element, universal metaphor and understanding the roles of both the media and new technologies were robustly discussed as part of the bigger picture. I was also able to make opportunities to discuss the notion of diversity and how different societies/communities around the world will interpret messages differently.
Whilst a good deal of the workshop gave opportunity for blue-sky thinking, it grounded very diverse perspectives in a community of joint interest. For my own part being jet-lagged, in a strange environment and in extreme heat made for quite an anxious start. However, the sessions were meticulously thought through and conducted in English. It is mortifying as a native English speaker, to be surrounded by people for whom this is a second or third language and who speak far more eloquently and with insight than someone who can barely master his own tongue. The company was truly diverse and I felt under a good deal of pressure as one of only two participants from the arts sector.
I most certainly feel that I added to the mix and injected the notion of thinking creatively around this public health agenda, but I could have more explicitly inputted on the role of the artist in society, both as reflecting and questioning societal norms. In particular, the role of the artist within research and development and community engagement is an area I hope to develop further in this work.
I was impressed by the creative insight of a number of participants from wildly different backgrounds, who positively exuded a deep understanding around the potency and relevance of the arts to this area of work.
Clive Parkinson
Sometimes You Just Get Lucky
I went fishing last Saturday on Fidalgo island with some friends.
That's a picture of the trophy minnow I caught after a full day of fishing. I'm thinking about having it mounted.
We made out a little better the next day.
Here are two of my other hunter-gatherer adventures for those who are interested:
Foraging
Hunting
That's a picture of the trophy minnow I caught after a full day of fishing. I'm thinking about having it mounted.
We made out a little better the next day.
Here are two of my other hunter-gatherer adventures for those who are interested:
Foraging
Hunting
North West Arts and Health Network Event:
DEMENTIA and IMAGINATION
There is a growing awareness that whilst humans are living longer (depending on your global post-code!) and science strives to cure disease, we’re nowhere near having the ‘magic bullet’ for dementia.
Charismatic and articulate individuals like Sir Terry Pratchet who are going through life with dementia are beginning to reduce the stigma associated with the disease and to an extent, reduce fear and raise awareness.
I’m most certainly not an expert in this field, but have had the pleasure of meeting individuals who are including people with the disease, those working in the field in a caring capacity, and those who believe that the arts have something to offer this issue.
I’ve read a little of Gene Cohen’s work on the subject www.creativeaging.org and the wealth of experience offered by Anne Davis Basting in her very readable ‘Forget Memory’ which sets out example of practice that creates better lives for people living with dementia. http://forgetmemory.org/
Last year I had the pleasure of hearing Carrie McGee from the Museum of Modern Art (MoMA) in New York, sharing work from the MoMA Alzheimer's Project which set out a trailblazing programme of activity, introducing people affected by dementia to iconic 20th Century art from its collection. The impact this has had on individuals and carers is profound, as is the passion and conviction of those educators running the programme. www.moma.org/meetme/index
More recently I have begun a very practical working relationship with an NHS dementia assessment unit where one of Ian Roberts' inspirational MMU, MA Three Dimensional Design students is working with hand crafted objects to stimulate discussion and engagement. It’s too early to elaborate on this work yet, but its been very enthusiastically embraced by those working in the unit.
During a panel discussion held at Staffordshire University last week, I sat alongside colleagues from the wider arts/health field and heard stimulating and challenging accounts of arts activity with older people in general and more specifically, around the issue of dementia. It seems there’s a lot of activity out there that engages people meaningfully, challenges and stimulates and raises wider understanding around aging and illness. http://www.praxisartsandhealth.org.uk/
And with the very unsettling, ‘Can Gerry Robinson Fix Dementia Care Homes?’ broadcast by the BBC earlier in the year, I am mindful of a huge area of need in the delivery of care for our most vulnerable elders. Can the arts offer something to this primary agenda? www.guardian.co.uk/society/joepublic/2009/dec/15/can-gerry-robinson-fix-care-homes
I’d like to invite submissions of arts-based practice for sharing at the networking event on the 27 May between 6:00 and 8:00 here at MMU.
What do I mean by this? Well, people have talked about film they’ve been involved in; dance and gallery based work. I am happy to facilitate an event that gives opportunities to discuss this, sharing film/materials and raising our own awareness of each other’s practice and aspirations.
If I have sufficient interest to put on a stimulating event, I will provide detail the week before. So if you’re interested in this idea, but don’t have work to share, please make a note of the date.
Something that has stayed with me and that I hope will influence this event is a focus on the possibilities of flourishing whilst experiencing dementia. Gene Cohen and Anne Basting both talk about cognition most certainly being impaired by dementia, but the resulting impact on inhibition has a profound effect on an individuals creative potential through imagination…which it’s suggested, can thrive.
So, what’s your practice and would you like to share it?
…Clive
To make this event manageable and enable discussion to be had on the evening, I’d be grateful if you could email ISB@mmu.ac.uk with any suggestions for your input, by Friday May 14.
These lovely images are from Arthur and Martha http://www.arthur-and-martha.co.uk/
Traditional Preparation Methods Improve Grains' Nutritive Value
Soaking or Germinating Grains
The most basic method of preparing grains is prolonged soaking in water, followed by cooking. This combination reduces the level of water-soluble and heat-sensitive toxins and anti-nutrients such as tannins, saponins, digestive enzyme inhibitors and lectins, as well as flatulence factors. It also partially degrades phytic acid, which is a potent inhibitor of mineral absorption, an inhibitor of the digestive enzyme trypsin and an enemy of dental health (1). This improves the digestibility and nutritional value of grains as well as legumes.
I prefer to soak all grains and legumes for at least 12 hours in a warm location, preferably 24. This includes foods that most people don't soak, such as lentils. Soaking does not reduce phytic acid at all in grains that have been heat-treated, such as oats and kasha (technically not a grain), because they no longer contain the phytic acid-degrading enzyme phytase. Cooking without soaking first also does not have much effect on phytic acid.
The next level of grain preparation is germination. After soaking, rinse the grains twice per day for an additional day or two. This activates the grains' sprouting program and further increases their digestibility and vitamin content. When combined with cooking, it reduces phytic acid, although modestly. Therefore, most of the minerals in sprouted whole grains will continue to be inaccessible. Many raw sprouted grains and legumes are edible, but I wouldn't use them as a staple food because they retain most of their phytic acid as well as some heat-sensitive anti-nutrients (2).
Grinding and Fermenting Grains
Many cultures around the world have independently discovered fermentation as a way to greatly improve the digestibility and nutritive value of grains (3). Typically, grains are soaked, ground, and allowed to sour ferment for times ranging from 12 hours to several days. In some cases, a portion of the bran is removed before or after grinding.
In addition to the reduction in toxins and anti-nutrients afforded by soaking and cooking, grinding and fermentation goes much further. Grinding greatly increases the surface area of the grains and breaks up their cellular structure, releasing enzymes which are important for the transformation to come. Under the right conditions, which are easy to achieve, lactic acid bacteria rapidly acidify the batter. These bacteria are naturally present on grains, but adding a starter makes the process more efficient and reliable.
Due to some quirk of nature, grain phytase is maximally active at a pH of between 4.5 and 5.5, which is mildly acidic. This is why the Weston Price foundation recommends soaking grains in an acidic medium before cooking. The combination of grinding and sour fermentation causes grains to efficiently degrade their own phytic acid (as long as they haven't been heat treated first), making minerals much more available for absorption (4, 5, 6, 7). This transforms whole grains from a poor source of minerals into a good source.
The degree of phytic acid degradation depends on the starting amount of phytase in the grain. Corn, rice, oats and millet don't contain much phytase activity, so they require either a longer fermentation time, or the addition of high-phytase grains to the batter (8). Whole raw buckwheat, wheat, and particularly rye contain a large amount of phytase (9), although I feel wheat is problematic for other reasons.
As fermentation proceeds, bacteria secrete enzymes that begin digesting the protein, starch and other substances in the batter. Fermentation reduces lectin levels substantially, which are reduced further by cooking (10). Lectins are toxins that can interfere with digestion and may be involved in autoimmune disease, an idea championed by Dr. Loren Cordain. Grain lectins are generally heat-sensitive, but one notable exception is the nasty lectin wheat germ agglutinin (WGA). As its name suggests, WGA is found in wheat germ, and thus is mostly absent in white flour. WGA may have been another reason why DART participants who increased their wheat fiber intake had significantly more heart attacks than those who didn't. I don't know if fermentation degrades WGA.
One of the problems with grains is their poor protein quality. Besides containing a fairly low concentration of protein to begin with, they also don't contain a good balance of essential amino acids. This prevents their efficient use by the body, unless a separate source of certain amino acids is eaten along with them. The main limiting amino acid in grains is lysine. Legumes are rich in lysine, which is why cultures around the world pair them with grains. Bacterial fermentation produces lysine, often increasing its concentration by many fold and making grains nearly a "complete protein", i.e. one that contains the ideal balance of essential amino acids as do animal proteins (11, scroll down to see graph). Not very many plant foods can make that claim. Fermentation also increases the concentration of the amino acid methionine and certain vitamins.
Another problem with grain protein is it's poorly digested relative to animal protein. This means that a portion of it escapes digestion, leading to a lower nutritive value and a higher risk of allergy due to undigested protein hanging around in the digestive tract. Fermentation followed by cooking increases the digestibility of grain protein, bringing it nearly to the same level as meat (12, 13, 14, 15). This may relate to the destruction of protease inhibitors (trypsin inhibitors, phytic acid) and the partial pre-digestion of grain proteins by bacteria.
Once you delve into the research on traditional grain preparation methods, you begin to see why grain-eating cultures throughout the world have favored certain techniques. Proper grain processing transforms them from toxic to nutritious, from health-degrading to health-giving. Modern industrial grain processing has largely eschewed these time-honored techniques, replacing them with low-extraction milling, extrusion and quick-rise yeast strains.
Many people will not be willing to go through the trouble of grinding and fermentation to prepare grains. I can sympathize, although if you have the right tools, once you establish a routine it really isn't that much work. It just requires a bit of organization. In fact, it can even be downright convenient. I often keep a bowl of fermented dosa or buckwheat batter in the fridge, ready to make a tasty "pancake" at a moment's notice. In the next post, I'll describe a few recipes from different parts of the world.
Further reading:
How to Eat Grains
A Few Thoughts on Minerals, Milling, Grains and Tubers
Dietary Fiber and Mineral Availability
A New Way to Soak Brown Rice
The most basic method of preparing grains is prolonged soaking in water, followed by cooking. This combination reduces the level of water-soluble and heat-sensitive toxins and anti-nutrients such as tannins, saponins, digestive enzyme inhibitors and lectins, as well as flatulence factors. It also partially degrades phytic acid, which is a potent inhibitor of mineral absorption, an inhibitor of the digestive enzyme trypsin and an enemy of dental health (1). This improves the digestibility and nutritional value of grains as well as legumes.
I prefer to soak all grains and legumes for at least 12 hours in a warm location, preferably 24. This includes foods that most people don't soak, such as lentils. Soaking does not reduce phytic acid at all in grains that have been heat-treated, such as oats and kasha (technically not a grain), because they no longer contain the phytic acid-degrading enzyme phytase. Cooking without soaking first also does not have much effect on phytic acid.
The next level of grain preparation is germination. After soaking, rinse the grains twice per day for an additional day or two. This activates the grains' sprouting program and further increases their digestibility and vitamin content. When combined with cooking, it reduces phytic acid, although modestly. Therefore, most of the minerals in sprouted whole grains will continue to be inaccessible. Many raw sprouted grains and legumes are edible, but I wouldn't use them as a staple food because they retain most of their phytic acid as well as some heat-sensitive anti-nutrients (2).
Grinding and Fermenting Grains
Many cultures around the world have independently discovered fermentation as a way to greatly improve the digestibility and nutritive value of grains (3). Typically, grains are soaked, ground, and allowed to sour ferment for times ranging from 12 hours to several days. In some cases, a portion of the bran is removed before or after grinding.
In addition to the reduction in toxins and anti-nutrients afforded by soaking and cooking, grinding and fermentation goes much further. Grinding greatly increases the surface area of the grains and breaks up their cellular structure, releasing enzymes which are important for the transformation to come. Under the right conditions, which are easy to achieve, lactic acid bacteria rapidly acidify the batter. These bacteria are naturally present on grains, but adding a starter makes the process more efficient and reliable.
Due to some quirk of nature, grain phytase is maximally active at a pH of between 4.5 and 5.5, which is mildly acidic. This is why the Weston Price foundation recommends soaking grains in an acidic medium before cooking. The combination of grinding and sour fermentation causes grains to efficiently degrade their own phytic acid (as long as they haven't been heat treated first), making minerals much more available for absorption (4, 5, 6, 7). This transforms whole grains from a poor source of minerals into a good source.
The degree of phytic acid degradation depends on the starting amount of phytase in the grain. Corn, rice, oats and millet don't contain much phytase activity, so they require either a longer fermentation time, or the addition of high-phytase grains to the batter (8). Whole raw buckwheat, wheat, and particularly rye contain a large amount of phytase (9), although I feel wheat is problematic for other reasons.
As fermentation proceeds, bacteria secrete enzymes that begin digesting the protein, starch and other substances in the batter. Fermentation reduces lectin levels substantially, which are reduced further by cooking (10). Lectins are toxins that can interfere with digestion and may be involved in autoimmune disease, an idea championed by Dr. Loren Cordain. Grain lectins are generally heat-sensitive, but one notable exception is the nasty lectin wheat germ agglutinin (WGA). As its name suggests, WGA is found in wheat germ, and thus is mostly absent in white flour. WGA may have been another reason why DART participants who increased their wheat fiber intake had significantly more heart attacks than those who didn't. I don't know if fermentation degrades WGA.
One of the problems with grains is their poor protein quality. Besides containing a fairly low concentration of protein to begin with, they also don't contain a good balance of essential amino acids. This prevents their efficient use by the body, unless a separate source of certain amino acids is eaten along with them. The main limiting amino acid in grains is lysine. Legumes are rich in lysine, which is why cultures around the world pair them with grains. Bacterial fermentation produces lysine, often increasing its concentration by many fold and making grains nearly a "complete protein", i.e. one that contains the ideal balance of essential amino acids as do animal proteins (11, scroll down to see graph). Not very many plant foods can make that claim. Fermentation also increases the concentration of the amino acid methionine and certain vitamins.
Another problem with grain protein is it's poorly digested relative to animal protein. This means that a portion of it escapes digestion, leading to a lower nutritive value and a higher risk of allergy due to undigested protein hanging around in the digestive tract. Fermentation followed by cooking increases the digestibility of grain protein, bringing it nearly to the same level as meat (12, 13, 14, 15). This may relate to the destruction of protease inhibitors (trypsin inhibitors, phytic acid) and the partial pre-digestion of grain proteins by bacteria.
Once you delve into the research on traditional grain preparation methods, you begin to see why grain-eating cultures throughout the world have favored certain techniques. Proper grain processing transforms them from toxic to nutritious, from health-degrading to health-giving. Modern industrial grain processing has largely eschewed these time-honored techniques, replacing them with low-extraction milling, extrusion and quick-rise yeast strains.
Many people will not be willing to go through the trouble of grinding and fermentation to prepare grains. I can sympathize, although if you have the right tools, once you establish a routine it really isn't that much work. It just requires a bit of organization. In fact, it can even be downright convenient. I often keep a bowl of fermented dosa or buckwheat batter in the fridge, ready to make a tasty "pancake" at a moment's notice. In the next post, I'll describe a few recipes from different parts of the world.
Further reading:
How to Eat Grains
A Few Thoughts on Minerals, Milling, Grains and Tubers
Dietary Fiber and Mineral Availability
A New Way to Soak Brown Rice
Subscribe to:
Posts (Atom)